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Abstract. The genenil question addressed here is: what  is the appropiate rate equ+ 
tion when one has mixed kinetics of the order parameter, i.e. of both conserved and 
non-eonserved types? The study is motivated by first considering various examples 
of atomic ordering precesses in which it makes sense to analyse the importance of 
mixed kinetics. The dismsion is bssed on Glauber and Kawasaki types of stochastic 
processes in a kinetic king model with long range interadions, described very well 
by the mean field approximation. It is found that in the limiting case in which one is 
not far from the uniform state (i.e. spatially homogeneous) and thermal equilibrium, 
the rate equation c m  be cast into the form assumed sometimes in phenomenologjcal 
rate theories of mixed kinetics. This identification allows for a critical analysis of 
various length scales, time scales and mixing coefficients that occur in mixed kinetic 
processes. In the far-from-equilibrium situation, however, the derived rate equation 
has a rather complex stmdure, not amenable to D simple interpretation. Finally, the 
possibilities of ohsening mixed kinetics me indicated by way of examples borrowed 
from atomic ordering phenomena in certain miner&. and a few general conclusions 
are drawn. 

1. Introduction: the conceptual  framework 

Structural phase transitions in crystalline solids form an important topic in physics, 
chemistry, metallurgy and mineralogy. While the equilibrium behaviour (the degree 
of ordering, etc.) has been well studied, the same is not true of the kinetics of ordering 
or (dis)ordering except for the case of exsolution in alloys. Recent,ly Salje and others 
[l] have put forward the rate equation (cf (1.1) of the preceding paper, henceforth 
referred to  as I) 

where the k refers to the 8th Fourier component. Here Q(r) is the spatially varying 
order parameter, r is a time which sets the basic time scale of the rate process, G is 
the free energy defined as a function of Q(T)  and the temperature T, and E ,  Cc are 
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parameters that will be discussed further below. The form (1.1) was introduced intu- 
itively as a mixed equation to  represent very general ordering situations in minerals, 
interpolating as it does with mixing coefficient &?./(* between the two well known ex- 
treme cases describing so-called conserved and non-conserved order parameters. For 
cc = 0 and a suitable form of G, the form (1.1) reduces to the Ginzburg-Landau 
equation for a non-conserved order parameter. On the other hand setting <?./t2 = 1 
and taking the lowest terms of the exponential yields 

which is the diffusion-type equation of Cahn and Billiard for a conserved order pa- 
rameter. The relation of (1.1) to these two limiting cases is discussed more fully in [I], 
but the main point here is that (1.1) was proposed to cover a wide variety of complex 
rate processes, and to interpolate between the extreme cases if necessary. 

The purpose of the present paper is to discuss more critically several questions 
about (l.l), the first being whether it makes physical sense to interpolate between 
the conserved and non-conserved cases: are these not discrete, mutually exclusive 
categories? We can consider this question by going back to the microscopic stochast.ic 
mechanism underlying the kinetics from which the macroscopic or mesoscopic rate 
equation (1.1) can be derived. The stochastic process is intended to represent the 
thermal excitations of the system and hence what actually happens a t  the atomic 
level. We start by considering the well known ‘discrete q54’ model (figure l), namely 
a lattice of atoms or more general entities, each bound to its lattice site, i, by a 
double-well potential and coupled by interactions JSI to other sites. Of course zli may 
represent something more complex than an atomic displacement, e.g. the distortion of 
a SiO, tetrahedron in a silicate or the twist of a molecul in biphenyl. Let us suppose 
the parameters and the temperature T are such that each atom or entity spends an 
appreciable amount of time in  its left or right well before changing to the other, i.e. 
we have a displacive system in its order/disorder regime. We may expect two types 
of processes. Firstly, suppose the two atoms in figure 1 are nearest neighbours with a 
strong coupling Jij bet.u;een them. When they are in the particular positions shown in 
figure 1, the spring Jij  is strongly compressed, thus exerting a strong force leftwards on 
atom i and rightwards on atom j. It is then likely that atom i would make a transition 
from its right well to  its left well, with atom j making simultaneously a transition from 
its left well to its right one. Indeed such a process is commonly observed in a molecular 
dynamic simulation of the system [Z]. Secondly, however, it is possible that there is a 
strong force to the left on atom i in figure 1 such as to make it change to the left well, 
bu t  that this force results from the combined eRect of the couplings Jij with several 
neighbours j without the reaction impulse on any one of them being large enough 
to make it jump to the right. This is particularly likely when there are many other 
atoms in the material besides those participating in the ordering process. For example 
ui may be the displacement of a cation inside a cage consisting of an octahedron of 
oxygen atoms, in which case the thermal velocity fluctuations of cation i will come 
more from its cage of oxygen atoms than from interaction with other cations j. Now 
since the system is in its order/disorder regime, we may approximate by discretizing 
it as usual by a set of king spins, with si = f l  denoting ui being in the right or left 
well respectively. The process of the first type then becomes an interchange of spins 
si and s j ,  known a8 a Kawasaki process [3], whereas a type ‘two’ jump just flips spins 
si, a Glauber process 141. 
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Figure I. Two atomsor entilies at sites i and j wilh displsaments U;, U, each feeling 
an an-site patentid "(U) = -ad +@U'. The coupling interaction between sites is 
-Jiju;uj. The black dots represent the displacements ui ,  uj at some particular 
instant. 

We conclude that mixing Kawasaki and Glauber stochastic processes is physically 
allowable for the displacive motel of figure 1. The significance of this lies in the 
fact that the Kawasaki process conserves the total spin of the system, whereas the 
Glauber process does not. For that reason Kawasaki and Glauber dynamics are usually 
associated with conserved and non-conserved order parameters respectively. But we 
see that in our example it is entirely reasonable to mix them, and as we shall show in 
section 2 this leads to a mixed equation of type (1.1). 

Having seen that we can mix Glauber- and Kawasaki-type processes for a displacive 
system, can we also mix them in the case of atomic A/B ordering? At  first sight 
it seems not, because if we represent A and B atoms on site i by a spin variable 
si = 3 ~ 1 ,  then a Kawasaki process interchanges the atoms on sites i and j which is 
perfectly allowable, but a Glauber process would turn an A atom into a B atom or 
vice versa which makes physical nonsense. However, we can mix them again if we 
generalize our model somewhat. Suppose we have a material with two sites per unit 
cell on which to order the A and B atoms as shown in figure 2(a) .  Then instead of si 
referring to individual atoms we can take i t  to refer to the two ordered configurations 
in figure 2(a). An interchange of the two atoms in one cell is then a Glauber process, 
whereas a Kawasaki process exchanges the configurations in two cells. Of course a cell 
may contain two A atoms or two B atoms so that its contents have to be described 
by a four-state model (though it may be that two like atoms are comparatively rare 
for energetic reasons so that we recover again approximately an Ising model). 

A further case is suggested by figure 2(6) with four atoms per cell: again we can 
imagine (dis)ordering processes that are Glauber-like intracell, and Kawasaki-like ones 
that are intercell. Such examples are not far fetched: Na/K feldspar is a simple case 
by the standards of mineralogy, with %/AI ordering on (only!) four sites per unit cell 

We may summarize the above discussion as follows. We have chosen to represent 
the behaviour of real minerals with displacive or atomic ordering using a generalized 
Ising model. In such a context it is sensible to consider atomic intracell (Glauber- 
like) and intercell (Kawasaki-like) ordering processes occurring simultaneously, which 
will lead in section 3 to the mixed case of the type described by (1.1). We note 
that the examples of atomic ordering in figure 2 and others such as silicate minerals 

[51. 
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Figure 2. Two different ordering pattem in a unit all mpresented by M Isins spin 
8 ,  = kl .  The fust type (a )  leads to fully anti-rem-eticphase transitions, while 
the second (b) results in a ferrcmagnnetic transition. 

involve ‘antiferromagnetic’ patterns, i.e. an ordering pattern of two types of atom in 
one superlattice cell, not exsolution of the two types of atom. Only in the latter case 
of exsolution must one use the strictly ‘conserved’ type of rate equation. 

Having answered our first question that a mixed equation (1.1) makes sense, we 
can enquire what the physical interpretation of the miving coefficient &?/E2 and the 
length scale in the exponential is [I]. We shall see (section 4 below) how the mixing 
coefficient may be related to the ratio of basic time scales characterizing Glauber- 
like and Kawasaki-like stochastic processes, with the < of (1.1) being identified with 
the separation distance EK of the Kawasaki process. However, our model calculation 
shows that the exponential form in (1.1) is noigeneral and can only be justified to first 
order (i.e. in the regimes of low k). In so far as the operand in (1.1) may be viewed as 
a driving force derivable from a kinetic potential that may or may not have anything 
to do with a model Ising system, we may expect our conclusion regarding the length 
scale 5 and the mixing coefficient to apply at least qualitatively to situations such as 
are illustrated in figure 1 and 2. 

Finally we may query if the correct driving force on the right hand side of (1.1) ia 
derivable from the derivative of the equilibrium form of the Gibbs free energy. This 
is discussed in detail in the companion paper where we solve the specific cases of a 
uniform king system under Glauber and Kawasaki stochastic processes respectively, 
in the mean field approximation. The resultant driving force is not equal to aG/aQ 
in either case (see I for details) and is therefore also expected to be different in the 
case of mixed kinetics. Of course there may be other physical situations in which the 
appropriate driving force is well approximated by aG/8Q. 

With the preceding survey of the conceptual background, the outline and purpose 
of the present paper are as follows. In section 2 we carry out a formal treatment of 
the order parameter kinetics for an Ising model under mixed Glauber and Kawasaki 
processes. A perturbation treatment in  the regime of small deviations from the uni- 
form equilibrium state, presented in section 3, will justify the conclusions which we 
have already put forward above. In section 3 we present also the connection in the 
simplest cases between our model and the Ginzburg-Landau and Cahn-Hilliard phe- 
nomenologies. In section 4 we pursue more generally the interpretation of the rate 
equation (1.1) and the various length scales and time scales that occur in the mixed 
kinetic process. Finally, we conclude that when the uniform state is far away from 
equilibrium, equation (1.1) may not have general validity. 
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2. Formal development of order parameter kinetics 

We begin our analysis of the mixed conserved-non-conserved kinetics from the combi- 
nation of order parameter equations for the Glauber and Kawasaki models, obtained 
under the decoupling approximation [3,6] 

Our idea is to study the temporal evolution of the spatially non-uniform state when 
we perturb away from the uniform state, analysed in depth in I [6]. Thus we split 

and treat terms up to O(m). The left hand side of (2.1) can then be separated into 
two terms as follows: 
d 1 
-Q(t) = ---[Q(t)-tanh(PJ(O)Q(t))]  -% [2&(t)-(1+Q2(1))tanh(2PJ(0)Q(t))] 
dt TC TK 

(2.3) 

The dynamics of the uniform part given by (2.3) has already been the subject of I. 
Here we concentrate on the non-uniform part, viz. (2.4), which is best handled by 
Fourier transforms. Thus introducing 

*( ) = -- 1 - PJ(k)sechZ ZQ 

rK I j  

70 'I d 

- L x ' [ , - Q ( t ) t a n h ( F Q ( t ) ) ]  
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where 

J ( E )  = J ~ ,  exp[ik. (rj - r l ) ]  (2.7) 
t 

and Tc has been defined in I. 
At this stage we introduce an assumption that Kawasaki jumps occur over a fixed 

length R,; of course for every RK jump there would be a corresponding -RK jump. 
(In most cases of interest RK would be expected to  be the nearest neighbour lattice 
vectors.) Thus (2.6) yields 

In order to  analyse (2.8) we would have to first solve for Q(t) from (2.3) and plug the 
solution into the right hand side of (2.8). 

3. Perturbation of the uniform equilibrium state 

The general order parameter equation in (2.8) is quite complicated. In order to simplify 
the analysis we imagine that we start from the situation when the system is in thermal 
equilibrium. The uniform magnetization Q(t) is then time-independent and is given 
by its MFT expression (cf (2.6) of I): 

Q(t) = €2, = tanh (3.1) 

Equation (2.8) then reduces to 

(3.2) 

In traditional discussions of order parameter kinetics in systems with long range in- 
teractions one is interested in the low k expansion of J ( E ) ,  i.e. 

J(k) J(O)( l  - 4k2R:) (3.3) 

which follows from (2.7) and the definition 
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Naturally, R, has the interpretation of the 'range' of the interaction. In this limit it 
is meaningful to set (after averaging over random distributions of RK over a sphere 
of radius c K )  

where tK ia a characteristic Kawasaki jump distance. If we further assume that 0, 
is small, then the long wavelength limit of (3 .2 )  reads 

Equation (3.6) subsumes the phenomenological order parameter equations [?I; the term 
involving rG is known as the Ginzbnrg-Landau equation for non-conserved kinetics 
[SI ,  whereas the term involving rK is called the Cahn-Hilliard equation for conserved 
kinetics [Q]. This identification follows from the recognition that the Ginzburg-Landau 
free energy may be expressed as 

G{Q(r)I = k d T -  T C N Q ( ~ ) ) ~  + A ( Q ( F ) ) ~  - B(VQ(r))* (3 .7 )  

Thus 

6G{Q(r)' = 2[kB(T - Tc)Q(r) + 2A(Q(r))3 - BV2Q(r)]. (3.8) 
6Q(r) 

Hence, upon approximating ( Q ( T - ) ) ~  as 3~2:~Q(r),  we may express (3.6) in the general 
form (cf (4.5) of I) 

(3.9) 

where the index k outside the brackets denote the kth Fourier component and the 
parameters A and B are identified as 

4. Interpretation, length scales, time scales etc 

The equation (3.6), derived in the case in which we are looking at small spatial and 
temporal fluctuations of the order parameter over and above an equilibrium state close 
to  Tc (i.e. Qq small), allows for a simple interpretation of our results. As remarked 
earlier, (-6G/SQ(r)), may be viewed as the drivingforce which in the present instance 
is given by (s) = 2[kB(Tc - T )  - Tc -Q T eq - -- 2 T  TcR:k2]Qk. (4.1) 
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This driving force is derived from a Landau-Ginzhurg-type free energy (3.7) which 
lends a physical meaning to the range parameter R, (cf (3.4)): R, measures the 
length scale over which the spatial modulation of the order parameter occurs as it is 
proportional to the coefficient of the ‘gradient energy’. On the other hand the effective 
‘relaxation time’ for mixed conserved-non-conserved kinetica is 

Thus unlike the driving force which is related to an equilibrium property, the origin 
of rr is entirely kinetic. However, rv also depends on another length scale, vis. E K ,  
the jump distance over which correlated jumps for conserved kinetica occur. 

While dl this is fine near the critical point, our main interest is in fact in ordering 
phenomena far away from the critical point in systems with long range interactions. 
In that case the order parameter kinetics, at least in one limit such as the one which 
is obtained when the system is initially in thermal equilibrium is given by (3.2). In- 
terestingly however, we could still write down our rate equation in the form of (3.9), 
but now the driving force is given by 

whereas the relaxation time is 

(4.3) 

(4.4) 

(Note that an equilibrium property, viz. Q has already crept into the expression 
for r,.) Additionally, if we average over the directions of RK (cf comment preceding 
(3.5)) equation (4.4) reduces to 

-l 

(4.5) 

The question now is, what is the appropriate kinetic potential corresponding to  the 
driving force in (4.3)? A moment’s reflection shows that it is given by the integral 
equation: 

G{Q(r)}  = (QZq - 1 ) / / J ( r  - r‘)Q(r)Q(r’)drdr’+ kBTQ2(r). (4.6) 

In a different context where the order parameter Q(r) characterizes a phonon-mediated 
displacive phase transition, it is tempting to interpret the first term in (4.6) as the 
enthalpy and the second term as a ‘harmonic’ entropy. 

Coming back to the question of the relaxation time we could rewrite (4.5), in the 
regime in which non-conserved kinetics dominate (i.e. rG is ‘small’), as 
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Because in the diffusive limit (cf (4.2) and (3.5)) we could introduce a ‘diffusion coef- 
ficient’ of conserved kinetics as 

we could express (4.7) as 

We could thus introduce another length scale for non-conserved kinetics as 

1-e, 2 

1 + Q& 
Q s 6DrG- 

to rewrite (4.9) in a form analogous to (1.1) 

(4.8) 

( 4 . 9 ~ )  

(4.9b) 

(4.10) 

Thus the term within the square parentheses measures the effective reduction in the 
rate of non-conserved kinetics. 

We close this section by remarking that in a more general situation of ordering 
kinetics, such as the one described by (2.8), it is not possible to write the rate equation 
in the form of (3.9) and provide separate interpretations for the driving force and the 
relaxation time. The two concepts are inexorably mixed up when we have a combi- 
nation of conserved and non-conserved kinetics. In a sense this is not an unexpected 
result in view of our findings in I; we show there that there is really no unique driving 
force for describing complicated ordering kinetics. 

5. Conclusion 

We have discussed in this paper the question of under what constraints and assump- 
tions the kinetic behaviour of a mixed Glauber and Kawasaki king system leads to the 
phenomenological rate law assumed by Salje and collaborators [lo-131. In all cases 
where competing processes lead to both conserved and non-conserved kinetics, the 
rate constant (cf (4.4)) is expected to be strongly k-dependent, especially when the 
Kawasaki jumps are not restricted to nearest neighbour distances. This has conse- 
quences for structural modulation and texture. As is evident from (4.5) the effective 
time constant for the rate process decreases with increasing k implying a coarsening 
of the texture [l, 111. This texture is different from microstructures arising from the 
&dependence of the driving force (i.e. the operand in (Ll)), which is related to the 
width of twin walls, anti-phase boundaries etc [14]. 

Experimental evidence for the relevance of microstructures in ordering processes 
(in contrast to  exsolution processes) is relatively rare. For instance, AI/Si (dis)ordering 
in sanidine [12] and the cation ordering in omphacite [I31 do not show any texture 
and appear to follow the non-conserved version of (1.1) with the driving force given 
by a LandauGinzburg G. On the other hand, a large admixture of non-conserved 
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and conserved processes is expected to dominate the NaK exsolution kinetics in a lMi  
feldspars-coarse microstructures are observed here in perthite and cryptoperthite 
[15]. Although the global chemical composition is conserved in this case, the local 
ordering process may contain some elements of a Glauber-like mechanism. 

Finallypystals with order parameters which describe chemical ordering (e.g. Ci- 
IT transition in plagioclases [I61 and mixed fluorites 1171) appear to lead to kinetic 
processes in whicb the Kawasaki length is finite, although Glauber-like kinetics is 
also locally possible. These systems exhibit extreme microstructures and appear well 
suited for further studies in order to elucidate the respective contributions of the 
various kinetic processes. 
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